HIGH SCHOOL ELECTIVE ADVANCED PLACEMENT BIOLOGY (USED AS A YEAR-LONG OR BLOCK-SCHEDULED COURSE)

Life Sciences Standard (LS)

11-12 Benchmarks	Grade Level Indicators and Sub-Objectives	Teaching Strategies/Resources
By the end of the 11-12 program, the student will:	By the end of Eleventh/Twelfth Grades, the student will:	
 Life Sciences ★ Explain how processes at the cellular level affect the functions and characteristics of an organism. (LS-A) ★ Explain how humans are connected to and impact natural systems. (LS-B) ★ Explain how the molecular basis of life and the principles of genetics determine inheritance. (LS-C) ★ Relate how biotic and abiotic global changes have occurred in the past and will continue to do so in the future. (LS-D) ★ Explain the interconnectedness of the components of a natural system. (LS-E) ★ Explain how human choices today will affect the quality 	 Characteristics and Structure of Life * Describe how the maintenance of a relatively stable internal environment is required for the continuation of life, and explain how stability is challenged by changing physical, chemical and environmental conditions as well as the presence of pathogens. (LS- 11-1) * Recognize that chemical bonds of food molecules contain energy. Energy is released when the bonds of food molecules are broken and new compounds with lower energy bonds are formed. Some of this energy is released as thermal energy. (LS-11-2) * Relate how birth rates, fertility rates and death rates are affected by various environmental factors. (LS-11-3) * Examine the contributing factors of human population growth that impact natural systems such as levels of education, children in the labor force, education and employment of women, infant mortality rates, costs of raising children, birth control methods, and cultural norms. (LS-11-4) * Investigate the impact on the structure and stability of ecosystems due to changes in their biotic and abiotic components as a result of human activity. (LS-11-5) * Recognize that information stored in DNA provides the instructions for assembling protein molecules used by the cells that determine the characteristics of the organism. (LS-12-1) * Explain why specialized cells/structures are useful to plants and 	
and quantity of life on earth. (LS-F)	animals (e.g., stoma, phloem, xylem, blood, nerve, muscle, egg and sperm). (LS-12-2)	Norton City Schools, Lung 2002

4.0		
* Summarize the historical	* Explain that the sun is essentially the primary source of energy for	
development of scientific	life. Plants capture energy by absorbing light and using it to form	
theories and ideas within the	strong (covalent) chemical bonds between the atoms of carbon-	
study of life sciences. (LS-G)	containing (organic) molecules. (LS-12-3)	
* Describe a foundation of	* Explain that carbon-containing molecules can be used to assemble	
biological evolution as the	larger molecules with biological activity (including proteins, DNA,	
change in gene frequency of	sugars and fats). In addition, the energy stored in bonds between the	
a population over time.	atoms (chemical energy) can be used as sources of energy for life	
Explain the historical and	processes. (LS-12-4)	
current scientific		
developments, mechanisms	<u>Heredity</u>	
and processes of biological	* Examine the inheritance of traits through one or more genes and how	
evolution. Describe how	a single gene can influence more than one trait. (LS-12-5)	
scientists continue to	* Explain how developmental differentiation is regulated through the	
investigate and critically	expression of different genes. (LS-12-6)	
analyze aspects of		
evolutionary theory. (The	Diversity and Interdependence of Life	
intent of this benchmark	* Predict some possible impacts on an ecosystem with the introduction	
does not mandate the	of a non-native species. (LS-11-6)	
teaching or testing of	* Show how populations can increase through linear or exponential	
intelligent design.) (LS-H)	growth with corresponding effects on resource use and environmental	
* Explain how natural	pollution. (LS-11-7)	
selection and other	* Recognize that populations can reach or temporarily exceed the	
evolutionary mechanisms	carrying capacity of a given environment. Show that the limitation is	
account for the unity and	not just the availability of space but the number of organisms in	
diversity of past and present	relation to resources and the capacity of earth systems to support life.	
life forms. (LS-I)	(LS-11-8)	
* Summarize the historical	* Give examples of how human activity can accelerate rates of natural	
development of scientific	change and can have unforeseen consequences. (LS-11-9)	
theories and ideas, and	* Explain how environmental factors can influence heredity or	
describe emerging issues in	development of organisms. (LS-11-10)	
the study of life sciences.	* Investigate issues of environmental quality at local, regional, national	
(LS-J)	and global levels such as population growth, resource use, population	
	distribution, over-consumption, the capacity of technology to solve	
	problems, poverty, the role of economics, politics and different ways	
	humans view the earth. (LS-11-11)	
	* Relate diversity and adaptation to structures and functions of living	
	organisms at various levels of organization. (LS-12-7)	

* Based on the structure and stability of ecosystems and their nonliving	
components, predict the biotic and abiotic changes in such systems	
when disturbed (e.g., introduction of non-native species, climatic	
change, etc.). (LS-12-8)	
* Explain why and how living systems require a continuous input of	
energy to maintain their chemical and physical organization. Explain	
that with death and the cessation of energy input, living systems	
rapidly disintegrate toward more disorganized states. (LS-12-9)	
Evolutionary Theory	
* Recognize that ecosystems change when significant climate changes	
occur or when one or more new species appear as a result of	
immigration or speciation. (LS-11-12)	
* Describe how the process of evolution has changed the physical world	
over geologic time. (LS-11-13)	
* Describe how geologic time can be estimated by observing rock	
sequences and using fossils to correlate the sequences at various	
locations. Recognize that current methods include using the known	
decay rates of radioactive isotopes present in rocks to measure the	
time since the rock was formed. (LS-11-14)	
* Explain additional components of the evolution theory, including	
genetic drift, immigration, emigration and mutation. (LS-12-10)	
Historical Perspectives and Scientific Revolutions	
* Trace the historical development of a biological theory or idea (e.g.,	
genetics, cytology and germ theory). (LS-12-11)	
* Describe advances in life sciences that have important, long-lasting	
effects on science and society (e.g., biotechnology). (LS-12-12)	
Sub-Objectives to Meet Indicators:	
Biochemistry	
• Compare and contrast organic and inorganic substances.	
• Classify the four main groups of biologically important organic polymers	
(i.e., carbohydrates, lipids, proteins, and nucleic acids) and their monomer units.	
• Recognize relationships between monomers and polymers and the various	
organic substances.	

	• Distinguish among nonpolar covalent, polar covalent, and ionic bonds.	
	• Compare and contrast buffers, acids, and bases.	
	• Demonstrate the ability to perform a dehydration synthesis and a	
	hydrolysis reaction.	
	Cytology	
	• Recognize the relationship between the cell theory and how technology	
	has added to or taken away from various portions of that theory.	
	• Describe the historical contribution to cell theory with regard to scientific	
	inquiry.	
	• Demonstrate competency in proper utilization and the implementation of	
	microscopes in general biological research.	
	• Associate the different cell organelles with their particular functions and	
	their relevance to the continuation of life.	
	• Show the interrelationships of the cell organelles in the production of cell	
	products.	
	• Compare and contrast eukaryotic and prokaryotic cells.	
	• Explain the probable functions and ultra structure of the cytoskeleton.	
	Homeostasis and Plasma Membrane	
	• Recognize the importance of membrane surface area versus volume of a	
	cell.	
	• Construct an apparatus that demonstrates the processes of diffusion and	
	osmosis.	
	• Identify and differentiate between the processes of active and passive	
	cellular transport and their importance to maintaining life through both	
	endocytosis and exocytosis.	
	• Discuss how membrane proteins determine in part what cells can	
	transport.	
	Describe the fluid-mosaic model of membrane structure.	
	• Distinguish among hypertonic, hypertonic, and isotonic solutions.	
	Explain how a concentration gradient works. Discuss compation processory	
	 Discuss osmotic pressure. Explain the codium/potencium pump 	
	 Explain the sodium/potassium pump. Explain dynamic aquilibrium. 	
	• Explain dynamic equilibrium.	
	Energy and Enzymes	
	 Explain the First and Second Laws of Thermodynamics. 	
Note: Obio Academic Content Star		Norton City Schools, June 2003

• Distinguish between catabolic and anabolic pathways.
• Describe the function of ATP in the cell.
• List the three components of ATP and identify the major class of
macromolecules to which each belongs.
• Describe the function of enzymes in a biological system.
• Explain the induced fit model of enzyme function.
• Differentiate between competitive and noncompetitive inhibition.
• Explain how enzyme activity can be regulated or controlled.
Photosynthesis
• Trace the role of carbon dioxide in the Calvin cycle.
• Utilize various extraction methods of chromatography to compare and
contrast pigments of various plants and algae.
• Identify various leaf structures and their relationships to photosynthesis.
• Demonstrate how different wavelengths of light correspond to different
plant pigments.
Compare and contrast photosynthesizers to chemosynthesizers.
• Compare and contrast the light and light independent (Calvin Cycle)
reactions of photosynthesis.
• Describe the relationship between the action spectrum and absorption
spectrum.
• Describe the chemiosmotic mechanism of photophosphorylation.
Cellular Respiration
• Distinguish between aerobic and anaerobic respiration.
• Recount the steps involved in glycolysis, the Krebs Cycle, and the
electron transport chain.
• Trace the flow of energy from glucose to ATP via cellular respiration.
Relate mitochondrial structure and function to cellular respiration.
• Explain how membrane structure is related to membrane function in
chemiosmosis.
• Summarize the net ATP yield from glucose oxidation.
• Explain why fermentation is necessary.
• Differentiate between plant fermentation and animal fermentation.
Mitosis/Meiosis
• Differentiate between asexual and sexual reproduction in plants and
animals.

• Trace the significant events that occur during mitosis and the two meiotic	
divisions (I, II).	
• Recognize the relationship between crossing over and independent	
assortment with genetic variability.	
• Determine the difference in the genetic outcomes of mitotic daughter cells.	
 Relate the role of the cell cycle to various cells and predict the outcomes 	
that will result from manipulation of the cell cycle.	
 Illustrate how meiosis is responsible for the production of gametes in 	
animals and spores in plants.	
• Illustrate karyotypes and how they may differ with different genetic	
abnormalities.	
Even Mondelien to Modeum Constin Theory	
 From Mendelian to Modern Genetic Theory Recount a brief history of Mendel's work in genetics. 	
 Distinguish between a genotype and its corresponding phenotype and the 	
role of alleles.	
 Associate Mendel's Law of Dominance and Law of Independent 	
Assortment with the results of a cross and probability.	
• Employ the Punnet Square to determine results of monohybrid and	
dihybrid crosses.	
• Discuss non-Mendelian trait inheritance such as sex-linked, sex-	
influenced, codominance, and polygenic traits.	
• Construct a karyotype from model chromosomes to determine genetic	
disorders and sex of the individual.	
DNA/RNA	
• Identify the monomers involved in the structure of DNA and RNA.	
• Explain the central dogma of DNA.	
• Discuss 3' to 5' and 5' to 3'concept.	
• Compare and contrast the processes of translation and transcription	
• Create a model demonstrating replication, translation, and transcription of nucleic acids.	
• Investigate mutations and distinguish between various types and their	
implications to population.	
• Discuss present genetic technology and projects to future needs (PCR,	
gene splicing, gel electrophoresis, and DNA fingerprinting).	
• Discuss ethical issues in genetic research and its relation to testing, gene	

therapies, and DNA ownership.
• Examine the pros and cons of gene therapy and recombinant DNA.
Origins and History of Life
• Trace the chronology of the origin and history of life from Lamarck to
Darwin to present day.
Recount and evaluate scientific evidence supporting modern evolutionary
theory, including geographic separation, fossils, anatomical similarities
and biochemical differences.
• State the conditions for the Hardy-Weinberg Law to be in effect and what
conditions can change the genetic outcomes.
Recognize relationships between mutations and change over time in plant and onimal nonvlotions
and animal populations.Recognize the relationship between selection and fitness of an organism.
· · ·
• Predict the impact of genetic drift on a population and its effects in the community.
 Characterize reproductive barriers and their effects on a population.
 Examine modern trends in evolutionary theory, such as adaptive radiation
and convergent/divergent, evolution and identify examples of these trends
in the world.
Plant Biology
• Compare and contrast hormone systems.
• Describe plant anatomy and the various functions of plant parts.
Classify vascular plants according to their reproductive cycles.
Animal Biology
Classify invertebrates and vertebrates according to given criteria.
Investigate human anatomy and physiology emphasizing the immune,
excretory, nervous, and circulatory systems.