HIGH SCHOOL ELECTIVE ADVANCED PLACEMENT PHYSICS (USED AS A YEAR-LONG OR BLOCK-SCHEDULED COURSE) Physical Sciences Standard (PS)

11-12 Benchmarks	Grade Level Indicators and Sub-Objectives	Teaching Strategies/Resources
By the end of the 11-12	By the end of Eleventh/Twelfth Grades, the student will:	
program, the student will,		
Physical Sciences	Nature of Matter	
* Recognize that some atomic	* Explain how all matter tends toward more disorganized states and	
nuclei are unstable and will	describe real world examples (e.g., erosion of rocks and expansion of	
spontaneously break down.	the universe). (PS-12-3)	
(PS-B)	* Recognize that at low temperatures some materials become	
★ Describe how atoms and	superconducting and offer little or no resistance to the flow of	
molecules can gain or lose	electrons. (PS-12-4)	
energy only in discrete		
amounts. (PS-C)	Forces and Motion	
* Apply principles of forces	* Describe real world examples showing that all energy transformations	
and motion to	tend toward disorganized states (e.g., fossil fuel combustion, food	
mathematically analyze,	pyramids and electrical use). (PS-11-3)	
describe and predict the net	* Explain how electric motors and generators work (e.g., relate that	
effects on objects or systems.	electricity and magnetism are two aspects of a single electromagnetic	
(PS-D)	force). Investigate that electric charges in motion produce magnetic	
\star Summarize the historical	fields and a changing magnetic field creates and electric field). (PS-11-	
development of scientific	4)	
theories and ideas within the	* Use and apply the laws of motion to analyze, describe and predict the	
study of physical sciences.	effects of forces on the motions of objects mathematically. (PS-12-5)	
(PS-E)	* Recognize that the nuclear forces that hold the nucleus of an atom	
	together, at nuclear distances, are stronger than the electric forces	
	that would make it fly apart. (PS-12-6)	
	* Recognize that nuclear forces are much stronger than electromagnetic	
	forces, and electromagnetic forces are vastly stronger than	
	gravitational forces. The strength of the nuclear forces explains why	

greater amounts of energy are released from nuclear reactions (e.g., from atomic and hydrogen bombs and in the sun and other stars). (PS 12.7)	
* Describe how the observed wavelength of a wave depends upon the	
relative motion of the source and the observer (Doppler effect). If	
either is moving towards the other, the observed wavelength is	
shorter; if either is moving away, the observed wavelength is longer	
(e.g., weather radar, bat echoes and police radar). (PS-12-8)	
\rightarrow Describe now gravitational forces act between an masses and always create a force of attraction. Recognize that the strength of the force if	
proportional to the masses and weakens rapidly with increasing	
distance between them. (PS-12-9)	
Nature of Energy	
* Explain how atoms and molecules can gain or lose energy in	
particular discrete amounts (quanta or packets); therefore they can	
only absorb or emit light at the wavelengths corresponding to these	
amounts. (PS-12-13)	
Historical Perspectives and Scientific Revolutions	
\star Use historical examples to explain how new ideas are limited by the	
context in which they are conceived; are often initially rejected by the	
scientific establishment; sometimes spring from unexpected findings;	
and usually grow slowly through contributions from many different investigators (e.g., nuclear operate quantum theory and theory of	
relativity). (PS-12-14)	
* Describe concepts/ideas in physical sciences that have important,	
long-lasting effects on science and society (e.g., quantum theory,	
theory of relativity, age of the universe). (PS-12-15)	
Sub-Objectives to Meet Indicators:	
Mechanics	
• Describe and utilize basic units of the metric system.	
• Convert simple metric units into each other.	
• Discuss the idea that motion is relative.	
• Differentiate between scalar and vector quantities, including both distance	

and displacement and speed and velocity.	
 Distinguish between velocity and acceleration. 	
• Plot and/or interpret experimental data on position versus time graphs and	
velocity versus time graphs.	
• Solve simple speed and displacement problems with equations and/or	
graphs.	
• Explain Newton's First Law of Motion, incorporating the concept of	
inertia.	
• Distinguish among mass, volume, and weight.	
• Explain Newton's Second Law of Motion and apply it to the relationships	
among net force, mass, and acceleration.	
• Solve simple problems using Newton's Second Law of Motion.	
• Explain Newton's Third Law of Motion and identify action-reaction	
forces.	
• Explain why action-reaction forces do not cancel each other out to	
prohibit the motion of an object.	
• Describe the effects of friction on an object.	
• Apply Newton's laws to describe the motion of objects at rest, moving at a	
constant velocity, and accelerating.	
• Distinguish between components and resultant.	
• Explain projectile motion using vectors and change in momentum.	
• Compare and contrast momentum and impulse.	
Compare and contrast impulses for different scenarios, including	
bouncing.	
• Explain the relationship between impulse and change in momentum.	
• Explain the Law of Conservation of Momentum.	
 Apply the Law of Conservation of Momentum to collisions and 	
explosions.	
• Solve simple problems using the Law of Conservation of Momentum.	
• Determine the amount of work done on an object.	
• Compare and contrast mechanical, gravitational, potential, and kinetic	
energy.	
• Solve simple problems using the definitions of potential and kinetic	
energy.	
• Explain and apply the Law of Conservation of Energy.	
• Solve simple problems using the Law of Conservation of Energy.	
• Explain the work-energy theorem.	

• Compare the relationship between speed and distance using the work-	
energy theorem.	
• Distinguish between rotational motion and revolving motion.	
• Distinguish between rotational speed and linear speed.	
• Compare and contrast centripetal force and centripetal acceleration.	
• Identify centripetal forces.	
• Determine the center of gravity of an object.	
• Explain the role of inertia, or how centrifugal forces have no role, in the	
motion of spinning objects.	
• Determine whether or not an object will tip.	
• Solve simple problems using the definition of torque and equilibrium.	
• Explain rotational inertia.	
• Explain and apply the Law of Conservation of Angular Momentum.	
• Define the Universal Law of Gravitation.	
• Explain the Inverse Square Law.	
• Apply the Universal Law of Gravitation to calculate changes in	
gravitational forces between two masses.	
• Explain the idea of weightlessness as an example of free-fall.	
• Explain how a satellite is able to orbit.	
Electricity and Magnetism	
Define the concert of charge and state the SL unit for charge	
• Define the concept of charge and state the SI unit for charge.	
• Explain the basic properties of charge including attraction, repulsion, and conservation	
 Distinguish between insulators and conductors 	
 Distinguish between instructors and conductors. Differentiate among charging by friction conduction and induction 	
• Explain the concept of electric field including how to determine its	
direction.	
• Explain the concept of electric shielding, that the electric field inside a	
charged conductor is zero.	
• Compare and contrast volt, electric current, and electric resistance.	
• Explain Ohm's Law.	
• Solve simple problems using Ohm's law.	
• Calculate equivalent resistances for series and parallel combinations of	
resistors.	
• Interpret simple schematic diagrams and be able to distinguish between	
parallel and series circuits.	

Perform simple circuit analyses on series and parallel circuits.	
• Explain the Domain Theory of Magnetism.	
• Determine magnetic field strengths and directions.	
• Distinguish between an electromagnet and an earth magnet.	
• Explain what factors determine the strength of an electromagnet.	
• Determine the direction of a magnetic field around current-carrying	
conductors.	
Calculate an induced EM using Faraday's Law.	
Heat and Thermodynamics	
• Compare and contrast the concepts of heat, temperature, and thermal	
energy.	
• Determine the direction of an induced current.	
• Solve problems using Faraday's Law.	
• Explain how Lenz's Law determines and controls the amount of induced	
current.	
• Explain thermal expansion and coefficients of expansion.	
• Solve thermal expansion problems.	
• Explain the concepts of specific and latent heat.	
• Solve problems using specific and latent heat.	
• Explain phase changes and temperature changes when heat is added to or	
taken from a substance.	
• Explain the First Law of Thermodynamics.	
• Compare and contrast adiabatic, isothermal, isometric, and isobaric	
processes.	
• Apply the First Law of Thermodynamics to heat engines.	
• Interpret schematic diagrams of heat engines and refrigerators.	
• Explain the Second Law of Thermodynamics.	
• Explain entropy as it relates to heat engines.	
Sound and Sound Waves	
• Distinguish between harmonic and periodic motion.	
• Compare and contrast amplitude, frequency, and period.	
• Determine the period of a harmonic oscillating spring.	
• Determine the period of a pendulum.	
• Calculate displacement, velocity, and acceleration for harmonic motion.	
• Distinguish between longitudinal and transverse waves.	
• Explain the properties and characteristics of waves, including reflection,	

refraction, diffraction, and interference.	
• Solve problems incorporating wave speed, frequency, and wavelength.	
• Explain the relationship between intensity and intensity level (decibels).	
• Explain the relationship between frequency and pitch.	
• Solve problems involving intensity levels.	
• Explain the human hearing thresholds of audibility while incorporating the	
dependence upon frequency.	
• Distinguish harmonics from pictorial representations of waves.	
• Calculate fundamental frequencies and harmonics for both closed and	
open pipes.	
• Explain resonance and distinguish between resonance and sympathetic	
vibrations.	
• Solve problems involving the Doppler Effect.	
Calculate beats and beat frequencies.	
-	
Light	
• Distinguish among reflection, refraction, diffraction, and interference.	
• Determine when each of the above do or do not occur.	
• Define angle of incidence and normal.	
Calculate angles of reflection.	
• Distinguish among plane, concave, and convex mirrors.	
• Determine the focal length of a curved mirror.	
• Determine image characteristics using the mirror equation.	
• Draw ray diagrams for the different types of mirrors.	
• Explain spherical aberration and explain how to correct for it.	
• Explain the concept of index or refraction.	
• Calculate angles of refraction using Snell's Law.	
• Distinguish between converging and diverging lenses.	
• Determine the focal length of a thin lens.	
• Determine image characteristics using the Lens Equation.	
• Explain chromatic aberration and how to correct it.	
• Explain the significance of Thomas Young's Double Slit experiment.	
• Distinguish between polarized and non-polarized light.	
• Solve problems for single, double, and multiple-slit diffraction patterns.	
• Explain why thin-film interference occurs.	
• Solve problems for Brewster's angle.	
• Explain why the sky appears blue, clouds appear white, and	

sunsets/sunrises appear red.	
Modern Physics	
• Explain the intent and outcome of the Michelson-Morley experiment	
 State Finstein's two postulates of Special Relativity 	
• Explain time dilation	
• Explain the twin-trin dilemma	
• Explain mass increase	
 Solve problems using length contraction 	
 Solve problems using relativistic mass and kinetic energy 	
 Solve problems using time dilation 	
• Explain Firstein's E-mc ²	
• Explain the relationship between wavelength and intensity for thermal	
radiation	
• Calculate the energy of a photon	
• Explain the photoelectric effect and its significance in determining the	
characteristics of light	
• Explain the relationship between the kinetic energy of a photoelectron and	
the frequency of the light source	
• Explain the relationship between the current produced during the	
photoelectric effect and the intensity of the light source	
 Distinguish between the predicted classical outcomes of the photoelectric 	
effect and the actual experimental outcomes	
• Explain and theoretically defend the dual nature of light	
• Explain Bohr's theory of the Hydrogen atom.	
Compare and contrast emission and absorption spectra	
• Explain Rutherford's gold foil experiment and state its significance.	
• Find atomic numbers and mass numbers on the periodic table and explain	
how these are determined for each element.	
• List the distinguishing characteristics of watch of various types of	
radiation Calculate binding energies for specific isotopes.	
• Compare and contrast nuclear fission and nuclear fusion.	
• Explain the differences in the energy released for fission and fusion.	
• Explain why nuclear fission results in radioactive waste.	
• Explain why nuclear fusion does not result in radioactive waste.	
• Explain and interpret energy level diagrams.	
• Calculate emitted or absorbed frequencies from emission or absorption	

 spectra. Explain why large nuclei become unstable. Explain what an isotope is. Solve problems using half-life information. Explain the concept of binding energy. Explain and calculate De Broglie wavelengths. Determine orbital radii for single electrons. Write balanced nuclear reaction equations. Explain why nuclear fusion is presently not a source of energy. Determine orbital radii for single electrons. 	
---	--